1、疾病风险管理与预测
疾病风险预测是指通过基因测序与检测,提前预测疾病发生的风险。疾病风险预测核心解决的问题是预测个体在未来一段时间内患某种疾病或(发生某种事件)的风险概率。疾病预测会根据某个人群定义,例如全人群、房颤人群、心梗住院人群等,针对某个预测目标,例如脑卒中、心衰、死亡等,设定特定的时间窗口,包括做出预测的时间点,和将要预测的时间窗,预测目标的发生概率。
目前AI可用于病种的预测包括(不限于):
- 心脏病患者死亡预测:英国科学家在《放射学(Radiology)》杂志上发表文章,研究结果认为人工智能可以预测心脏病人何时死亡。英国医学研究委员会下的MRC伦敦医学科学研究所称,人工智能软件通过分析血液检测结果和心脏扫描结果,可以发现心脏即将衰竭的迹象。
- 骨关节炎发展预测:在Shinjini Kundu的研究中,通过收集大量人群10年间的软骨MRI影像数据,通过人工智能去寻找健康人群和患病人群的影像差别。正常人的软骨上的水是均匀分布的,而患有骨关节炎的患者MRI图像上红色部位有水的聚集。人工智能通过大量图像数据的学习,能够发现正常人的软骨中的异常,从而预测出未来三年患有骨关节炎的概率。据介绍,这套系统目前的准确度已经达到了86.2%。
- 流行病风险预测:医疗人工智能通过对医疗大数据的收集分析,可在多个方面提高医疗系统的效率。完成城市或国家层面的流行病风险预测。
AI在疾病预测上还包括精神病发病风险预测、慢性肾病分级预测、脑疝预测等。
目前国内共有45家公司提供“疾病风险预测”服务。其中包括:华大基因、瑞昂生物、安诺优达、图玛深维、博奥生物、泛生子基因、生命奇点、赛福基因、图玛深维、贝瑞和康等。
2、医学影像
医学影像,是目前人工智能在医疗领域最热门的应用场景之一。目前国内共有40余家公司提供“医学影像”服务。“医学影像”应用场景下,主要运用计算机视觉技术解决病灶识别与标注、靶区自动勾画与自适应放疗、影像三维重建三种需求。
在病灶识别与标注细分领域,有不少企业参与竞争,如阿里云、腾讯、京东、翼展科技、推想科技等,行业竞争较为激烈。医学影像核心产品的病灶识别准确率高、用时短。
靶区自动勾画和自适应放疗软件通过算法帮助放疗科医生对200-450张CT片进行自动勾画,30分钟即可完成一套CT片子的勾画,远低于医生手动勾画平均耗时(4小时)。研发企业包括:汇医慧影、全域医疗、连心医疗、依图科技等。
博裕金融通过行业前景、基层眼科医疗情况分析、企业走访等,认为医学影像未来市场空间很大,其中至真互联是最具发展潜力的。至真互联网技术有限公司是一家致力于将人工智能与医疗服务相结合的企业。亮点在于:
- 高质量的影像数据:数量上来看,至真目前拥有最大成人眼底眼底病病灶影像数据库规模1300万张,数据时间跨度从2008年~2019年的十年数据,分布于158家同仁以及医联体的临床数据库。质量上看,于2016年起协同中国最优秀的一批眼科副主任医生标注出的一套AI算法影像数据库(截止至今,标注数据库已经达到110万张,标注数据质量度国内最高),标注医生团队来自同仁医院。其中糖尿病视网膜影像标注已经获得中检院标准的认定,是目前国内标注质量和规模最大的数据库;标注数据仍然在进行增长,目前已经完成多病种青光眼、黄斑病变、高度近视等重要眼底病的影像标注储备,此外至真非常重视全人群眼底影像数据投入和建设,截止2019年6月底,成功构建了新生儿眼底影像数据库,这套数据库目前是中国最大的新生儿眼底影像数据库,为未来开展新生儿智能筛查提供了有利的储备;合法合规性上看,至真是合规合法与同仁医院签约,针对眼底影像数据AI开发合作的公司。这为后续 CFDA认证、器械评审以及国家合规性要求提供了有利支撑。
- 软件+硬件构建完整商业闭环。目前很多互联网医疗企业面临无法变现的困境。至真自主研发合作生产国内首款智能设备手持式眼底照相机,自动对焦、自动曝光、自动追踪;95%以上筛查算法直接赋能诊断推理;从眼底采集到AI分析报告产出只需要5分钟。目前设备已经在社区医院、体检医院、基层医院等医疗机构落地,用于基层眼底疾病的筛查诊断。目前已经与复兴、美年健康、普瑞眼科合作,盈利模式初步打通。
- 2018年获得百度投资,2019年获得金浦投资。金浦曾投资控股过多家眼科医院,至真可以与眼科医院联动,提高眼底疾病筛查诊断效率,为医院导流。
3、医院管理
医院管理,主要指针对医院内部、医院之间各项工作的管理,主要包括病历结构化、分级诊疗、DRGs(诊断相关分类)智能系统、医院决策支持的专家系统等。在分级诊疗的政策推动之下,国内陆续出现促进分级诊疗的企业服务,行业前景广阔。分级诊疗的实现,离不开医联体与智能云服务,二者相辅相成。
目前国内共有21家公司提供“医院管理”服务,业务大多集中于病历结构化服务。提供病历结构化服务企业:大数医达、中科汇能、科大讯飞、Airdoc、心医国际、森亿智能等。提供分级诊疗服务企业:锐达医疗、翼展科技、心医国际、思派等。提供DRG&专家系统的企业:医渡云、雕龙数据等。
4、辅助诊疗
除医学影像以外,“AI+辅助诊疗”的产品还有两大类:医疗大数据辅助诊疗、医疗机器人(主要指针对诊断与治疗环节的机器人)。医疗机器人主要包括手术机器人、肠胃检查与诊断机器人、康复机器人等。我国在医疗机器人的研究与政策支持方面,都具有良好的发展环境。目前国内致力于手术机器人的公司主要采用两种业务模式:
- 第一种,面向医院进行机器人产品的单独销售,并提供长期维修服务;
- 第二种,是为医院提供手术中心整体工程解决方案。国外,IBM和Google均已布局辅助诊疗,并构建完整系统。
IBM Watson for Oncology 是基于认知计算(读懂大数据背后的含义)的医疗大数据辅助诊疗解决方案,为全球首家将认知计算运用于医疗临床工作中。Google研发的DeepMind Health系统将机器学习和系统神经科学结合,通过强大的通用学习算法模拟构建人脑神经网络,以便更好的解决医疗保健问题;DeepMind系统于2016年在英国的一家医院使用。
目前国内有8家公司提供医疗大数据辅助诊疗服务:恵每医疗、新屿科技、思派、若水医生、百洋智能科技等;11家公司提供“医疗机器人”服务:天智航、妙手机器人、新松机器人、六维康复、祈飞科技等。
5、虚拟助理
医疗领域中的虚拟助理,基于特定领域的知识系统,通过智能语音技术和自然语言处理技术,实现人机交互,将患者的病症描述与标准的医学指南作对比,为用户提供医疗咨询、自诊、导诊等服务。根统计,目前国内共有15家公司提供“虚拟助理”服务,主要解决语音电子病历、智能导诊、智能问诊、推荐用药等需求,并且有衍生出更多需求的可能性。企业包括:语音电子病历-科大讯飞、云知声、中科汇能;智能导诊-科大讯飞、进化者机器人等;智能问诊-云知声、若水医生、康夫子、半个医生、云听等;推荐用药-自测用药、恵每医疗等。
6、健康管理
“健康管理”应用场景,主要包含营养学、身体健康管理、精神健康管理三大子场景。目前国内共有14家公司提供“健康管理”服务,公司大多集中于身体健康管理场景。企业包括:妙健康、碳云智能、橙意家人、人和未来、解码DNA、时云医疗等。
国内在营养学场景的人工智能公司较少,国人尚未普遍树立营养饮食意识;碳云智能和Airdoc的产品分别通过血糖监测和菜品识别指导用户合理用餐。
国际上,爱尔兰都柏林的创业公司Nuritas是营养学应用场景中的典型代表。Nuritas将人工智能与生物分子学相结合,进行肽的识别;根据每个人的身体情况,使用特定的肽来激活健康抗菌分子,改变食物成分,消除食物副作用,从而帮助个人预防糖尿病等疾病的发生、杀死抗生素耐药菌。
7、辅助医学研究平台
辅助医学研究平台,是利用人工智能技术辅助生物医学相关研究者进行医学研究的技术平台。2014年以来,国家卫计委、国务院先后出台相关文件,鼓励医疗机构及医生进行科学研究。
目前国内共有14家人工智能公司建立辅助医学研究平台。其中包括:推想科技、零氪科技、基因港、森亿智能、生命奇点、博奥生物、嘉因生物、贝瑞和康等。
8、药物挖掘与研究
传统的药物研发存在研发周期长、研发成本高、研发成功率低等痛点。人工智能与药物挖掘的结合,使得新药研发时间大大缩短,研发成本大大降低;这将有可能根本上改变用药“平均”观念。
目前国内AI+药物挖掘已经在逐步落地,但研发周期仍相对较长,且算法需要大量的时间和数据积累,短期内很难产生营收数据。国内有7家公司提供“药物挖掘”服务。其中包括:思路迪、舶众数据、瑞博生物、吉凯基因、裕策生物、赛福基因、明码生物科技等。想了解更多可以查看这里。
0 thoughts on “行业报告丨AI技术驱动的医疗革命”
这篇文章详细介绍了AI在医疗领域的应用场景,展示了人工智能技术对于疾病风险预测的切实可行性。